Quadratic nonnegative matrix factorization
نویسندگان
چکیده
In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Most NMF methods assume that each factorizing matrix appears only once in the approximation, thus the approximation is linear in the factorizing matrices. We present a new class of approximative NMF methods, called Quadratic Nonnegative Matrix Factorization (QNMF), where some factorizing matrices occur twice in the approximation. We demonstrate QNMF solutions to four potential pattern recognition problems in graph partitioning, two-way clustering, estimating hidden Markov chains, and graph matching. We derive multiplicative algorithms that monotonically decrease the approximation error under a variety of measures. We also present extensions in which one of the factorizing matrices is constrained to be orthogonal or stochastic. Empirical studies show that for certain application scenarios, QNMF is more advantageous than other existing nonnegative matrix factorization methods. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملNonnegative matrix factorization with quadratic programming
Nonnegative Matrix Factorization (NMF) solves the following problem: find such nonnegative matrices A ∈ RI×J + and X ∈ RJ×K + that Y ∼= AX, given only Y ∈ RI×K and the assigned index J (K >> I ≥ J). Basically, the factorization is achieved by alternating minimization of a given cost function subject to nonnegativity constraints. In the paper, we propose to use Quadratic Programming (QP) to solv...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012